
CPS311 Lecture: CPU Implementation: The Register Transfer Level, the
Register Set, Data Paths, and the ALU

Last revised August 5, 2015
Objectives:

1. To show how a CPU is constructed out of a register set/ALU/datapaths and a
control word.

2. To discuss typical components of the register set/ALU/datapaths
3. To show how a mips-like machine could actually be implemented using digital

logic components already seen

 Materials:

1. Java Multicycle MIPS implementation simulation
2. Handout of block diagram for the above
3. Circuit Sandbox simulations

a. One bit of a register
b. Four bit register
c. Four bit register with 2 inputs

4. Projectable versions of the following:
a. Diagram showing relationship between the control word and datapaths
b. Implementation of a typical bit of the PC
c. Implementation of a typical bit of the register set
d. Implementation of a typical bit of the ALU

5. Handout: RTL for multicycle MIPS implementation
6. File containing machine language code for adding 1 to memory location 1000
7. File containing machine language code from Lab 5 Part I
8. Handout with assembly language and machine language versions for 6 and 7

I. Introduction

A. For the last several weeks, we have been focussing on computer
architecture. Today (and in fact for the rest of the course) we turn out
attention to computer organization. What is the difference in meaning
between these two terms?

ASK

1

1. Computer architecture refers to the functional characteristics of the
computer system, as seen by the assembly language programmer
(or the compiler that generates assembly/machine language code,
as the case may be.

2. Computer organization refers to the physical implementation of an
architecture.

3. Historically, significant architectures have had numerous
implementations, often over a period of decades.

a) IBM mainframe architecture - first developed with System 360
in mid 1960’s - still being used (with modifications) in
machines manufactured today.

b) DEC PDP-8 architecture - first developed in late 1960’s - last
implementation in 1990. (Went from minicomputer with CPU
realized as discrete chips to microprocessor).

c) Intel IA32 architecture - first used in 80386 family in
mid-1980’s; still utilized by current Pentiums, and Intel has
committed to continuing to develop into the future.

d) IBM/Motorola PowerPC architecture (the chip once used in
Macintoshes and still used in CISCO routers and many TV set-
top boxes) - first developed in mid 1990’s, still utilized today.
(The most recent version, the G5, represents the 5th generation
of this architecture. The G5 is a 64-bit chip that fully
implements the 32 bit architecture with 64-bit extensions Each
generation has had multiple implementations.)

B. To try to develop in any detail the implementation of a contemporary
CPU is way beyond the scope of this course - and also way beyond
the scope of my knowledge, in part because manufacturers don’t
publish all the details about their implementations - for obvious
reasons! Instead, we will focus on a hypothetical implementation of a
subset of the MIPS ISA - which is relatively simple, and for which
published information actually is available

2

1. It should be understood from the outset that the implementation
presented here is definitely NOT the structure of an actual MIPS
implementation.

a) The implementation we will present first is a multicycle
implementation, in which each machine instruction requires
several CPU clocks cycles to execute, and each instruction is
completed before the next is begun. The MIPS ISA is designed
to facilitate a pipelined implementation in which the execution
of several instructions is overlapped in such a way as to cause
one instruction to start and one to finish on every clock cycle.
(The average time per instruction is one clock cycle, though in
fact each instruction still needs multiple clock cycles to
execute.)

b) The implementation we will present does not support a number
of features of the MIPS ISA - though these could be added at
the cost of additional complexity.

(1)The hi and lo registers, and multiply and divide instructions.

(2)Support for coprocessors, including floating point
instructions.

(3)Kernel-level functionality, including interrupt/exception
handling.

(4)The distinction between signed and unsigned arithmetic - we
will do all arithmetic as signed.

c) The implementation we will present does not include some
efficiency “tricks”.

2. Other ISA’s could be implemented using the same basic approach
as in this example - though differing significantly in detail, of
course. (The same basic overall structure).

3

3. In a later set of lectures, we will present a pipelined
implementation of the MIPS ISA that is similar to what actual
implementations look like. Understanding the multicycle
implementation we will present here will provide a good
foundation for understanding the pipelined implementation. Our
goal here is pedagogical.

C. Note that our focus here is on how a CPU is implemented. Later in
the course, we will look at memory and IO systems. It turns out that,
to a large extent, these are independent of the ISA of the particular
CPU they are used with, so we can consider them in isolation.

D. To understand CPU implementations, we make use of a fundamental
principle in computer science: the notion of levels of abstractions.

1. In essence, what this means is that we can look at any given system
at several different levels. Each level provides a family of
primitive operations at that level, which are typically implemented
by a set of primitive operations at the next level down.

2. Example: The higher-level language programming level is one way
of viewing a computer system, and the assembly-language
programming level is the level just below it. A typical statement in
an HLL is generally realized by a series of AL statements (though in
some cases just one may be required). E.g. in Java or C/C++, we
might set the boolean variable smaller to true or false depending
on whether the integer variable x is less than the integer variable y:

smaller = x < y;

on MIPS, this might be translated into:
	 lw	 $4, x
	 lw	 $5, y
	 slt	 $4, $4, $5	 # $4 = boolean result of x < y
	 sw	 $4, smaller

4

II. The Register-Transfer level of Abstraction

A. Today, we begin discussing the next level of abstraction down in the
hierarchy: the Register-Transfer Level. This level has the following
characteristics:

1. The primitive operations at this level are called microoperations

2. Each microoperation is directly realized by hardware, and can be
carried out in a single clock cycle.

3. Each Assembly-language level instruction in the ISA is realized by
a series of microoperations.

a) Some of these may be done in parallel if they use disjoint
hardware components

b) But most will need to be done sequentially, resulting in several
clock cycles being used to implement the operation from the
ISA.

B. An RTL operation is described by an expression of the form

destination ← source

which indicates that, on the clock pulse, the source value is copied
into the destination. (See below for discussion of possible
destinations and sources)

1. The source may be

a) A register

b) Some simple combinatorial operation performed on two
registers - e.g. bitwise &, |, ^; add or subtract. (But not multiply
or divide)

5

c) A memory cell. (Often abbreviated as M[x], where x is the
source of the address)

NOTE: Actual access to a cell in memory may take 100’s of
clock cycles. However, as we will see later in the course, the
memory system is configured to allow most accesses to be done
in one clock cycle. Thus, a microoperation involving a memory
cell may be done in one clock, or may result in the CPU being
stalled until it can be completed.

2. The destination may be

a) A register

b) A memory cell (same notation and caveats as above).

C. Sometimes a microoperation is done on just part of a register. In this
case, the specific bits are indicated in parentheses after the register
name - e.g.
someReg(0) ← 0
someReg(7..0) ← someOtherReg(15..8)

D. Associated with each RTL operation is a control signal that determines
whether or not that operation is performed on a particular clock. This
may be denoted by
signal name : operation

which indicates that the operation is performed just when the control
signal in question is true

E. If two or more microoperations involve disjoint sets of hardware
components, they can be done in parallel on the same clock. This is
quite common in CPU hardware. This is denoted by writing the two
microoperations on the same line, separated by a comma - e.g.

IR ← M[PC], PC ← PC + 4

6

F. Recall that a CPU consists of two major components.

1. What are they?

ASK

a) The Arithmetic-Logic Unit (ALU), register set, and datapaths
(including the path to memory). Sometimes, this is just called
the ALU for short (i.e. there is a broad and a narrower meaning
of the term.)

b) The Control Unit

2. It is the task of the ALU, register set, and datapaths to actually
perform the various microoperations. It is the task of the Control
Unit to sequence the microoperations. That is, they are
interconnected as follows:

PROJECT

3. In the rest of this lecture, we focus on the ALU, Register set, and
Datapaths. The next series of lectures will deal with the Control
Unit.

7

Control Unit ALU, register
set, and
datapaths

Control Signals
(called the
control word)

Memory

Address

Data

CPU
Clock

III.The ALU, Register Set, and Datapaths

A. This portion of the CPU includes the circuitry for performing
arithmetic, and logic operations, plus the user visible register set and
special registers that connect to the Memory and IO systems. The
actual structure of this part of the CPU as physically implemented is
usually not identical to that implied by the ISA.

1. The actual physical structure that is implemented is called the
microarchitecture.

2. The microarchitecture must, of course, include components that
correspond to the various parts of the system that appear in the
ISA (e.,g. the registers). We call this the architectural state.

3. The microarchitecture usually includes registers that do not appear
in the ISA. We call these the non-architectural state.

4. An ISA might have various specialized registers, but the
microarchitecture might utilize general registers which are mapped
to the various special functions in the ISA.

5. It is common today to find CPU’s that have a CISC ISA being
implemented by a RISC microarchitecture (RISC core) We will
not, however, pursue this topic since things can get quite complex!

B. Micro-architecture for a Multicycle MIPS Implementation

PROJECT Java simulation

HANDOUT printed version of the diagram

C. The System Clock

1. At the heart of most computer systems is a system clock, whose
output looks like this:

8

one cycle

or perhaps this:

one cycle

2. The frequency of the clock dictates the overall speed of the system.

a) For example, if a computer is reported to use a CPU with a 2
GHz clock, it means that there are 2 billion clock cycles per
second - so each cycle takes 1/2 nanosecond.

b) The maximum clock frequency possible for a given system is
dictated by the propagation delays of the gates comprising it. It
must be possible for a signal to propagate down the most time-
consuming path in not more than one clock cycle.

c) Most systems are engineered conservatively, in the sense that
the clock frequency is actually slightly slower than what might
actually be possible. This allows for variations in component
manufacture, etc. It also leads to the possibility of overclocking
a given CPU as a (somewhat risky) performance-improvement
“trick”.

3. The various registers comprising the system are synchronized to
the clock in such a way that all state changes take place
simultaneously, on one of the edges of the clock.

9

a) In the example we will be developing, we will assume that all
state changes take place on the falling edge of the clock. (It
would also be possible to design a system in which state
changes take place on the rising edge of the clock.)

b) In some systems (including most mips implementations), while
most state transitions take place on one edge, there are some
transitions that occur on the other edge. This allows certain
operations to be allocated 1/2 a cycle of time. (But more on
this later - for now we ignore this possibility.)

4. In our simulation, the system clock is simulated by the clock
button. Pressing it corresponds to a rising clock edge, and
releasing it to a falling clock edge.

DEMONSTRATE WITH CONTROL SET TO HARDWIRED

D. The heart of the CPU is the registers.

1. Registers can be implemented in one of two ways:

a) Using a small, special-purpose static memory

b) Using flip-flops - one flip-flop per bit.

(1)The following is a typical way to implement one bit of a
register using flip-flops:

D QMUX

Data in

Load Enable

Data out

Clock

10

(a) On every clock, the D flip flop loads a new value.
Depending on the Load Enable control signal, this is either
Q (Load Enable = 0) or the Data in value (Load Enable = 1).

(b)Of course, in the former case it would appear to an observer
that the flip flop has not changed state - i.e. it has loaded the
value that it already contains, so nothing changes.

(c) Thus, this device exhibits the following behavior:

i) When Load Enable = 0, its value does not change

ii) When Load Enable = 1, its value changes on the clok
to whatever is on Data input

Demonstrate using Circuit Sandbox simulation.

(2)An n-bit register can be implemented by using n copies of
this circuit. The clocks are all tied together, as are the Load
Enables. Each bit has its own Data input and data output.

Demonstrate using Circuit Sandbox simulation

2. Either the Write Enable for a memory implementation or the Load
Enable for a flip-flop implementation becomes a bit of the control
word. Thus, the register behaves as follows:

Write/Load Enable bit	

 Register state after
in Control Word	

 next clock pulse

0	

 No change
1	

 Copy of data input (before clock)

E. The registers are connected by various data paths.

1. A microoperation such as

SomeDestination ← SomeSource

(where SomeDestination is an n-bit register and SomeSource is an
n-bit register or some other n-bit data source) can be implemented

11

by connecting the data inputs of SomeDestination to the data
outputs of SomeSource.

2. Typically, though the input to a given register can come from
multiple places - e.g. there are multiple microoperations of the form

SomeDestination ← SomeSource
SomeDestination ← SomeOtherSource

In this case, we need selectable data paths

3. One way to implement such data paths is by using MUXes.

a) Suppose a certain n-bit register can receive input from any one
of 2 sources. One way to implement this is with by connecting
the data inputs to n 1 out of 2 MUXes, each of which selects
one bit of data input from one of the 2 possible sources.

Demonstration: 4 bit register with 2 inputs

b) The selection input for the MUXes becomes part of the control
word, along with the Load Enable for the register. Thus, the
register behaves as follows

Write/Load Enable bit	

 Source select bit	

 Register state after
in Control Word	

 in Control Word	

 next clock pulse

0	

 -	

 No change
1	

 0	

 Copy of source “A”
1	

 1	

 Copy of source “B”

(When a source is copied, it represents the value of the source as
it was before the clock)

c) Of course, the same approach could be used with more than two
sources - e.g. up to four sources are possible by using n 1 out
of 4 MUXes with 2 source select bits in the control word, etc.

4. Another way to implement such data paths is by using internal
busses. (We won’t discuss this option here).

12

F. Registers and Data Paths in our example

1. The Program Counter (PC) - 32 bits, holding the address of the
next instruction to be executed.

a) An output connected to the memory system

b) An input which can be connected either to an adder that adds 4 to
the current value, or an adder that adds a scaled and extended I
Format constant (to support beq/bne), or to the constant field of J
Format instructions, scaled by * 4

DEMO Incrementing the PC

c) The PC is capable of simply retaining its current value or of
performing one of the following microoperations:

PC ← PC + 4	

 	

 	

 	

 - used for all instructions
PC ← PC + sext(4*I Format constant) - used for beq/bne
PC(27:0) ← 4*J Format constant	

 - used for j, jal

d) Implementation: 32 bit register with a parallel load capability and
input wired to a 3-way MUX (4 - way MUX with one input unused)

Typical bit	

 PROJECT

13

1 out of 4
 MUX

Flip-Flop with
parallel load
capability

Load enable
From
IR I
Constant

PC Source selection
(2 bits)

(See
discussion)

Address
to memory
system

From
IR J
Constant

e) Notes:

(1)Adding + 4 is achieved by hard-wiring the second input of
bit 2 of the adder to be 1, and all others to be 0.

(2)Scaling of constants from the IR is done by shifting - e.g. bit
0 from the IR goes to the MUX/flip flop for bit 2, bit 1 from
the IR goes to bit 3, etc. Bits 0 and 1 always receive 0. For
j/jal, bits 31..28 receive the bit in the corresponding position
in the PC, since the constant is 26 bits shifted left two places
to produce a 28 bit constant.

(3)Actually, since the PC must always contain a multiple of 4,
it is not necessary to implement the two low order bits as
flip-flops; they can simply be hardwired to 0.

DEMONSTRATE trying to load 7 into the PC

2. The Instruction register (IR) - 32 bits register holding the current
instruction being executed.

a) The control unit uses the opcode stored in this register as input.

b) Various bits in this register are also used to select registers in
the general register set, as discussed below.

c) Various bits in this register (the constant portion of I or J
Format instructions) can be sent to the ALU or the Program
Counter.

d) The input to this register comes from the memory. It is loaded
when a new instruction is fetched from memory.

e) The IR is capable of simply retaining its current value or of
performing the microoperation

IR ← Memory[Address]	

 - used for all instructions

DEMO putting a value into M[0] and then loading into IR

14

f) Implementation: 32 bit register with parallel load capability -
input coming from the memory system

3. The General Register set - 32 registers, 32 bits each

a) Two outputs. One is the register selected by the rs field of the
instruction register contents; the other the register selected by
the rt field of the instruction register contents. (If the
instruction doesn’t have these fields, then whatever registers are
selected by the corresponding bits of the instruction are
selected, though they may be ignored.)

b) One input which can be connected to either the ALU or the
memory

c) The register set is capable of simply retaining the current value of
all registers, or of performing the one of the following
microoperations involving a specific register (where register[rs]
denotes the register selected by the rs field of the IR, etc.)

Register[rd] ← ALU Output	

 - used for RType instructions
Register[rd] ← Memory[Address]	

 - (not actually used)
Register[rt] ← ALU Output	

 - used for immediate instr
Register[rt] ← Memory[Address]	

 - used for load instructions
Register[31] ← ALU Output	

 - used for jal instructions
Register[31] ← Memory[Address]	

- (not actually used)

(Note that the implementation makes some operations possible
that are never actually used.)

DEMO loading a value into a register from the ALU

d) Implementation: an array of 32 registers - each 32 bit with
parallel load capability - plus two arrays of out of 32 MUXes to
derive the outputs, and one array of 1 out of 2 MUXes to derive
the input, and with three decoders used to derive the parallel
load control signals. (Note: $0 is implemented by hard-wiring
to 0 and ignoring store attempts)

15

PROJECT

G. The ALU in our example

1. The ALU is a subsystem composed of two input registers, an
output register and a set of combinatorial circuits.

a) There are two inputs, representing input into the two input
registers. On every clock pulse, the A and B input registers are
loaded from these inputs.

DEMO: Put 00220000 in IR; expand to show rs = 1, rt = 2, load
r1 and r2 with known values and then show effect of clock.

16

...

.

.

.

rs output

rt output

1 out of 32 MUXes -
controlled by rs and rt
fields of instruction,
respectively

32 flip flops
with parallel
load

32 way decoders
controlled by rd
and rt fields of
instruction,
respectively

enables
to
decoders

0

D Q

D Q

D Q

Data
input

b) On every clock pulse, the combinatorial circuits compute some
function of the inputs, which is then loaded into the output
register.

DEMO

c) There is one output, coming from the output register.

2. The possible functions the ALU can perform include all the
operations needed to perform the various R-Type and immediate
instructions. In particular, the combinatorial circuits in the ALU
can perform one of the following microoperations. (Actually, the
ALU always does one of these, though the output may not actually
be used.)

Output ← A + B
Output ← A - B
Output ← A & B
Output ← A | B
Output ← A ^ B
Output ← A nor B
Output ← B << shamt
Output ← B >> shamt
Output ← B >>> shamt
Output ← B << A
Output ← B >> A
Output ← B >>> A
Output ← A < B
Output ← B << 16
Output ← A

3. The specific computation performed by the combinatorial circuits
is either specified explicitly or is determined by the func field of
the current instruction (for R Type instructions)

DEMO various operations

17

4. Implementation

a) Three registers: three arrays of flip flops that are always loaded
on every clock.

b) Combinatorial network, with each function implemented and
one function selected by a MUX

Typical Bit	

 	

 	

 PROJECT

18

Output register
flip flop

Input register
flip flops (2)

+
to next
bit

from
previous

...

H. The Memory System

1. The memory system is actually a distinct portion of the overall
computer system, which has a great deal of internal complexity of
its own. We will discuss the structure of the memory system later
in the course. For now, we think of the memory as a “black box”
whose interface is what is shown in the diagram.’

2. The memory has two inputs - an address and data - and one output.
The address in can come either from the PC or the ALU output;
data in comes from the register set, the output can go either to the
register set or the IR. It can do nothing or perform one of the
following microoperations (among others).

IR ← Memory[PC] (Instruction READ) - Data in is ignored
Data out ← Memory[ALU out] (Data READ) - Data in ignored
Memory[ALU out] ← Data in (WRITE) - Data out is ignored

DEMONSTRATE

I. Data Paths

1. The data paths provide for the flow of 32-bit words of information
between the other components, as necessary to support the
microoperations needed to implement the ISA.

2. The data paths consist of wires plus MUXes used to allow multiple
inputs to a single component. These are under the control of bits in
the control word.

DEMONSTRATE

19

IV.Executing Machine-Language Instructions as Series of
Microoperations

A. Each instruction in the ISA is realized by a series of microoperations,
which can be expressed as an RTL “program” for carrying it out.

B. To see how individual machine instructions can be executed as a
series of microoperations, let’s walk through the execution of a single
instruction, which adds the contents of registers 5 and 6 and puts the
result in register 4:
sub $4, $5, $6

000000 00101 00110 00100 00000 000000
0x00a62022

1. Load machine language into location 0; initialize $4 to 0, $5 to 1,
$6 to 2, and PC to 0

2. Ask class to develop RTL for each step - demo each in turn

IR <- M[PC], PC <- PC + 4
ALUInputA <- register[rs], ALUInputB <- register[rt]
ALUOutput ¨ ALUInputA func ALUInputB
	 (note how simulation shows function as -)
register[rd]<- ALUOutput

C. Handout complete RTL for Multi-Cycle MIPS Implementation; then
go through

D. Two more demos. In these cases, we will let the control words be
generated automatically using the Control unit which we will discuss
next

1. The following adds 1 to the contents of memory cell 0x1000:

lw $2, 0x1000($0)
addi $2, $2, 1
sw $2, 0x1000($0)

20

This corresponds to the following machine-language program:

8c021000
20420001
ac021000

HANDOUT

DEMO: Load program, examine memory location 1000; step
through execution using hardwired control.

2. We will now execute the machine language program developed for
Part I of Lab 5 on our simulators.

HANDOUT

DEMO: Load, execute with initial value in $4 = 3.

* Note that each program terminates with “dummy instruction”
- b .-4 which produces an infinite loop. In our second example,
this would be our jr if we had a main program as in lab.

21

